
Exploring the United Kingdom
Anonymised Department for Transport Ministry of

Transport (MOT)
Anonymised Safety, Roadworthiness Test Results

Tidewater Big Data Enthusiasts
Chuck Cartledge

Developer

November 4, 2021

Contents

1 Introduction 1

2 Approach 1

3 Analysis 2

4 Conclusion 13

A Miscellaneous files 14

List of Tables

1 An unordered list of questions. 2
2 Fuel was used by type per year. 11

List of Figures

1 First use reported by year. 12

i

1 Introduction

The UK Ministry of Transport (MOT) is required to test cars and other light vehicles at
least once a year to ensure they comply with the current road worthiness and environmental
requirements. The anonymised results of these nation wide tests are made available to the
public. This report details an exporation into the 2021 test results.

2 Approach

The MOT database is of interesting size with over 38 million test results. As with almost
any data of this size, the steps are to locate, clean, and analyze the data.

Locate: The data is available as a ZIP file from:
https://data.gov.uk/dataset/e3939ef8-30c7-4ca8-9c7c-ad9475cc9b2f/anonymised-mot-tests-and-results

The ZIP file contains one CSV file for each calendar quarter. Each file has a header
record, and some number of CSV lines. These are the fields in each line:
test id, vehicle id, test date, test class id, test type, test result, test mileage, post-
code area, make, model, colour, fuel type, cylinder capacity, and first use date
Details of each field are in the MOT User Guide (see Section A).

Clean: Even though the data was computer generated, one’s interpretation and implementa-
tion of CSV may not be anothers. So the data lines were “cleaned” to make loading
into a database seamless. This cleaning resulted in the loss of 1 line.

Analysis: The size of the database (in excess of 38 million records) made analysis using normal
R and Python tools problematic. The data was loaded into a PostGres database, SQL
queries were run against the database, and finally the results were analyzed using R
as needed.

https://data.gov.uk/dataset/e3939ef8-30c7-4ca8-9c7c-ad9475cc9b2f/anonymised-mot-tests-and-results

3 Analysis

A series of questions asked during the exploration of the MOT anonymised safety test re-
sults.

Table 1: An unordered list of questions.

Question Results

1 How many raw
lines are there in
the MOT
database? Raw
lines include all
headers and “bad”
lines.

38,594,017

2 How many lines
are there after
“bad” lines are
removed?
(Includes all
header lines.)

38,594,016

3 How many tuples
are in the
database?

tuples

38594012

4 How many unique
vehicle IDs are
there?

count

29988236

(Continued on the next page.)

2

Table 1. (Continued from the previous page.)

Question Results

5 What are the test
results by type?

test result count

ABA 21344

ABR 190989

ABRVE 31

F 7296397

P 28969654

PRS 2115597

6 What are the test
results by postal
code?

postcode aba abr abrve f p prs

AB 189 1301 0 75922 229742 9230

AL 66 932 0 27256 127169 9076

B 663 7549 4 178475 816480 75136

BA 141 1538 0 77557 252256 17708

BB 111 2146 0 54998 231491 17391

BD 206 2066 0 63318 245049 17689

BH 248 2006 0 91739 306771 22716

BL 146 1396 1 49900 205274 13060

BN 382 2347 1 107539 351605 25084

BR 74 903 0 20015 109479 9732

First 10 rows

of 119 rows.

(Continued on the next page.)

3

Table 1. (Continued from the previous page.)

Question Results

7 What are the
reported first year
use? There are
problems with data
in the database.
First use years
range from 1 to
2913.

year count

1 1

3 1

4 3

13 1

14 1

221 1

998 1

1005 2

1010 2

1012 1

First 10 rows

of 145 rows.

8 How many test IDs
reported first year
use are NULL?

test id vehicle id

1355972487 688080473

1165432363 1278184067

222813899 453061241

1200951149 958132003

373153567 1428388413

245208109 799459405

1767117079 665896789

1425929191 64112623

1340632219 1253123325

1170038275 429391605

First 10 rows

of 631 rows.

(Continued on the next page.)

4

Table 1. (Continued from the previous page.)

Question Results

9 How many
different types of
fuel types are
reported?

fuel type used

CN 153

DI 17724943

ED 11683

EL 93018

FC 656

GA 137

GB 1013

GD 40

HY 439059

LN 33

LP 13630

OT 30484

PE 20279130

ST 33

(Continued on the next page.)

5

Table 1. (Continued from the previous page.)

Question Results

10 How many vehicles
were tested how
many times?

testedtimes vehicles

1 21916201

2 7598108

3 418874

4 51274

5 3341

6 360

7 53

8 13

9 5

10 3

11 1

20 1

30 1

401 1

11 Which were the
most tested
vehicles? Results
limited to the 20
most tested
vehicles.

vehicle id testedtimes

223981155 401

950296697 30

1424313517 20

1200788799 11

554929346 10

80739093 10

750683211 10

156470364 9

1323635323 9

672614726 9

First 10 rows

of 20 rows.

(Continued on the next page.)

6

Table 1. (Continued from the previous page.)

Question Results

12 What was the test
history for a
selected vehicle?
Query limited to
vehicle id =
“672614726”
because previous
explorations
indicated this was
an “interesting”
vehicle.

test date test mileage test type test result

2020-02-11 94276 NT F

2020-02-13 NA RT ABR

2020-02-14 NA RT ABR

2020-02-14 NA RT ABR

2020-02-17 94354 NT P

2020-11-12 NA RT ABR

2020-11-12 99946 NT F

2020-11-17 99946 RT P

2020-11-17 NA RT ABR

13 What fuel was
used by type per
year? (See the
discussion about
the range of first
use years in the
database.)

Table too wide to fit in this space. Information presented
elsewhere (see Table 2).

(Continued on the next page.)

7

Table 1. (Continued from the previous page.)

Question Results

14 Which vehicles
passed more than
once? A vehicle
could be tested
and passed more
than once per year.

vehicle id numberinspections

223981155 379

596385553 8

1200788799 7

750683211 7

792483345 6

791792197 6

646334849 6

974650785 6

1323635323 6

459704131 6

First 10 rows

of 1,203,476 rows.

15 How many taxis
were tested how
often?

vehicle id make timestested

1200788799 LONDON TAXIS INT 11

80739093 LONDON TAXIS INT 10

750683211 LONDON TAXIS INT 10

156470364 LONDON TAXIS INT 9

1323635323 LONDON TAXIS INT 9

104372541 LONDON TAXIS INT 8

597689537 LONDON TAXIS INT 8

1215761132 LONDON TAXIS INT 7

814462287 LONDON TAXIS INT 7

291716978 LONDON TAXIS INT 7

First 10 rows

of 15,479 rows.

(Continued on the next page.)

8

Table 1. (Continued from the previous page.)

Question Results

16 What are the most
common terms in
the “make”
attribute? Serves
as a surrogate as
to the most
common make in
the database. It is
close, but not
exact because the
“make” attribute
is not consistent.

Count Term

5,653,959 FORD

4,065,830 VAUXHALL

3,420,229 VOLKSWAGEN

1,914,139 BMW

1,851,344 PEUGEOT

1,823,633 NISSAN

1,723,679 TOYOTA

1,703,307 AUDI

1,446,961 MERCEDES-BENZ

1,437,405 RENAUTL

First 10 rows

of 7,149 rows.

17 How old are the
tested vehicles?

Approximately 50% (17,883,539) reported a first use year
prior to 2011 (see Figure 1).

(Continued on the next page.)

9

Table 1. (Continued from the previous page.)

Question Results

18 Which vehicles
have the most
miles? (Not truely
answerable
because it appears
the database uses
999999 as some
sort of indicator.)

test mileage first use date make model

999999 2003-09-15 ROVER 75

999999 2004-11-25 ROVER 75

999999 1999-07-03 NISSAN ALMERA

999999 2005-07-13 MG ZT

999999 2007-09-03 MERCEDES SPRINTER

999999 2000-09-11 PEUGEOT 406

999999 2004-05-29 ROVER 75

999999 2001-03-01 AUDI TT

999999 2004-03-26 ROVER 75

999999 2003-05-02 ROVER 75

First 10

of 37,586,720 rows.

(Last page.)

Plotting the cumulative reported first use values (see Figure 1) raises hints and ideas
about aspects that are not captured in the MOT database. These include:

1. Excepting the period prior to 1900 and from 2018 onward, the graph is almost linear
on a logarithmic scale, implying an exponential rate of change. But what is that rate?

2. Is there a correlation between number of cars still in use, and periods of recession or
depression?

3. Do the “flat” periods on the plot correlate to changes in population, personal wealth
or income?

4. How has the curve changed over time? If we were to look at the data from 5 or 10
years ago could we estimate how often cars are “retired from service” or how many are
added to service?

5. Has the effective cost of a vehicle contributed to more vehicles being put into service?
How much would the single car from 1854 cost compared to the “average” car from
2018?

10

Table 2: Fuel was used by type per year. See the discussion about the range of first use
years in the database.

year cn di ed el fc ga gb gd hy ln lp ot pe st
1 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
3 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA NA NA NA 3 NA

13 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
14 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA

221 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
998 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA

1005 NA 1 NA NA NA NA NA NA NA NA NA NA 1 NA
1010 NA NA NA NA NA NA NA NA 1 NA NA NA 1 NA
1012 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1013 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1014 NA 4 NA NA NA NA NA NA NA NA NA NA 5 NA
1015 NA 1 NA NA NA NA NA NA NA NA NA NA 2 NA
1016 NA 1 NA NA NA NA NA NA NA NA NA NA 2 NA
1017 NA 2 NA NA NA NA NA NA NA NA NA NA 2 NA
1019 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1087 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1197 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1199 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA
1212 NA NA NA NA NA NA NA NA NA NA NA NA 1 NA

First 20 rows
of 146 rows.

11

Figure 1: First use reported by year. The range of first use year reports is wide. From
1 in 1854 to 2,792,959 in 2017. The number of first year uses for the period 2018 – 2020
are considerably lower. Vehicles have to be at least 3 years old before their first test. The
vertical red line shows that by 2010 there were 13,248,945 vehicles reportedly first used.
The horizontal red line shows that the approximately 50% mark for the entire time period.
The horizontal red line does not appear in the middle of the plot because the Y-axis is a
logarithmic scale to encompass the wide range of values. The values inside the plotting area
on the left hand-side are the “normal” values that correspond to the exponents.

12

4 Conclusion

We explored the UK’s Ministry of Transport publicly available database of vehicle test
results. The database contains over 38 million individual test results for almost 30 million
unique vehicles from as long ago as 1854. Exploring the database identified a variety of
different fuel types in use, errors when entering first use data, a number of vehicles that were
inspected numerous times within a few days, and some vehicle types there were inspected
more than others. The R source code and SQL commands used to create, populate, and
query the database are included in this report.

13

A Miscellaneous files

A collection of files used in the creation of this report.

• fileDownload.sh – download, unzip, and “clean” MOT data before loading into the

database

• createTablesMOT.sql – SQL commands to create MOT database

• populateTablesMOT.sql – postgres commands to populate the MOT database (based

on other files)

• queryTablesMOT.sql – SQL commands to test that MOT database was loaded cor-

rectly

• exploreMOTdata.R – R script to explore the MOT database

• termFrequency.sh – A bash shell script tailored to report how many times unique terms

were used in the “make” attribute of the mot relation.

• MOT user guide v4.docx – MOT User’s Guide

The embedded files can be extracted using an Adobe reader tool. The files may not be
extractable using a web browser.

14

#!/bin/bash

tempDir="/tmp/MOTData"
tempFile=$(mktemp /tmp/MOTTempDataFile.XXXXXX)

sourceDir=`pwd`

mkdir -p $tempDir

cd $tempDir

wget http://data.dft.gov.uk/anonymised-mot-test/test_data/dft_test_result_2020.zip

unzip dft_test_result_2020.zip

mv dft_test_result-from-2020-01-01_00-00-00-to-2020-04-01_00-00-00.csv temp-01.csv
mv dft_test_result-from-2020-04-01_00-00-00-to-2020-07-01_00-00-00.csv temp-02.csv
mv dft_test_result-from-2020-07-01_00-00-00-to-2020-10-01_00-00-00.csv temp-03.csv
mv dft_test_result-from-2020-10-01_00-00-00-to-2021-01-01_00-00-00.csv temp-04.csv

files=`ls *csv`

for file in $files
do
 echo "Processing "$file
 sed -i 's/\\"//g' $file
 grep -v "\\\\," $file > $tempFile
 mv $tempFile $file
 chmod 666 $file
done

cd $sourceDir

"Chuck Cartledge"

DROP TABLE IF EXISTS mot;

CREATE TABLE IF NOT EXISTS mot
(
test_id varchar(255) ,
vehicle_id varchar(255) ,
test_date varchar(255) ,
test_class_id varchar(255) ,
test_type varchar(255) ,
test_result varchar(255) ,
test_mileage varchar(255) ,
postcode_area varchar(255) ,
make varchar(255) ,
model varchar(255) ,
colour varchar(255) ,
fuel_type varchar(255) ,
cylinder_capacity varchar(255) ,
first_use_date varchar(255)
);

"Chuck Cartledge"

COPY mot FROM '/tmp/MOTData/temp-01.csv' DELIMITER ',' CSV HEADER;
COPY mot FROM '/tmp/MOTData/temp-02.csv' DELIMITER ',' CSV HEADER;
COPY mot FROM '/tmp/MOTData/temp-03.csv' DELIMITER ',' CSV HEADER;
COPY mot FROM '/tmp/MOTData/temp-04.csv' DELIMITER ',' CSV HEADER;

"Chuck Cartledge"

select count(*) from mot;

select * from mot limit 1;

"Chuck Cartledge"

rm (list=ls())

library(DBI)
library(RPostgreSQL)

latexTableFromDataFrame <- function(df, limit=10)
{
 cat("\\begin{table}[ht]")
 cat(paste0("\\", "centering", collapse=""))
 latexTabularFromDataFrame(df, limit=limit)
 cat(paste0("\\","end{table}", collapse=""))
}

latexTabularFromDataFrame <- function(df, limit=10)
{
 localFunction <- function(text)
 {
 escapeThese <- c("_")
 backSlash <- "\\"

 for(char in escapeThese)
 {
 text <- gsub(char, paste0(backSlash, char, collapse=""), text, fixed=TRUE)
 }

 return(text)
 }
 cat("\\begin{tabular}")
 cat(paste0("{",paste0(rep("r", ncol(df)), collapse=""),"}", collapse=""))
 cat(paste0("\\","MyHline", collapse=""))
 cat("\n")
 temp <- c()
 columnNames <- colnames(df)
 numberOfColumns <- length(columnNames)
 for (name in columnNames)
 {
 separator <- ifelse(name == columnNames[numberOfColumns], "\\\\", "&")
 temp <- c(temp, paste0("\\textbf{", localFunction(name), "}", separator, collapse = ""))
 }

 cat(paste0(temp, collapse=""))
 cat(paste0("\\","hline", collapse=""))
 cat("\n")
 numberOfRows <- min(nrow(df), limit)
 for (i in 1:numberOfRows)
 {
 temp <- c()
 for (j in 1:ncol(df))
 {
 separator <- ifelse(j == ncol(df), "\\\\", "&")
 temp <- c(temp, paste0(localFunction(df[i,j]), separator, sep="", collapse = ""))
 }
 cat(paste0(temp, collapse=""))
 }
 if (i != nrow(df))
 {
 cat(paste0("\\","multicolumn{", numberOfColumns, "}{c}{",sprintf("First %.0f}\\\\", i), sep="", collapse=""))
 cat(paste0("\\","multicolumn{", numberOfColumns, "}{c}{",sprintf("of %s rows.}\\\\", formatC(nrow(df),format="d", big.mark=",")), sep="", collapse=""))
 }
 cat(paste0("\\","MyHline", collapse=""))
 cat(paste0("\\","end{tabular}", collapse=""))
}

dropTempTable <- function(con, tableName="temp")
{
 query <- sprintf("drop table if exists %s", tableName)
 dbGetQuery(con, query)
}

mostMiles <- function(con)
{
 query <- "select test_mileage, first_use_date, make, model from mot where test_mileage is not null order by test_mileage desc"
 returnValue <- dbGetQuery(con, query)
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsMostMiles.tex")
 invisible(returnValue)
}

plotYearData <- function(con, imageFileName="../Images/plotYearData.png")
{
 addRecessions <- function(d)
 {
 ## https://en.wikipedia.org/wiki/List_of_recessions_in_the_United_Kingdom
 startsAndStops <- c(1873, 1896,
 1919, 1921,
 1930, 1931,
 1956, 1956,
 1961, 1961,
 1973, 1974,
 1975, 1975,
 1980, 1981,
 1990, 1991,
 2008, 2009,
 2020, 2021)

 yUpperLimit <- par("usr")[4]
 yLowerLimit <- par("usr")[3]
 for (i in seq(1, length(startsAndStops), by=2))
 {
 rect(startsAndStops[i], yLowerLimit, startsAndStops[i+1], yUpperLimit, density = 5, border = "blue")
 }
 }

 if (is.null(imageFileName) == FALSE)
 {
 png(imageFileName, width=960, height=480)
 }

 df <- getFirstUseYears(con)

 tooLow <- which(df$year < 1800)
 tooHigh <- which(df$year > 2030)

 data <- df[-c(tooLow, tooHigh),]
 data$year <- as.numeric(data$year)

 data$cumsum <- cumsum(data$count)
 pchars <- rep(24, nrow(data))
 indices <- which(data$cumsum <= 0.5*max(data$cumsum))
 pchars[indices] <- 6

 yRange <- pretty(log10(data$cumsum))

 plot(x=range(data$year),
 ## y=range(log(data$cumsum)),
 y=c(yRange[1], yRange[length(yRange)]),
 typ="n",
 xlab="Year",
 ylab="log(cumulative cars in database)")

 points(x=data$year,
 y=log10(data$cumsum),
 pch=pchars)

 year <- data$year[indices[length(indices)]]
 abline(v=year, col="red")
 value <- data$cumsum[which(data$year == year)]
 temp <- sprintf("%.0f -- %s", year, formatC(x=value, big.mark="," , format="d"))
 text(x=year, y=0, label=temp, srt=90, pos=3, col="red", offset=3)
 abline(h=log10(value), col="red")

 mtext("Percentage of vehicles in service", side=4)

 ## addRecessions(data)

 indices <- par("yaxp")

 for (i in seq(indices[1], indices[2], length.out=(indices[3] + 1)))
 {
 text(x=par("xaxp")[1], y=i, label=formatC(10^i, format="d", big.mark=","), pos=4)
 }

 ticks <- seq(0, 100, length.out = 6)
 ats <- c()
 minValue <- min(data$cumsum)
 maxValue <- max(data$cumsum)
 rangeValues <- maxValue - minValue

 for (i in ticks)
 {
 temp <- minValue + rangeValues * i / 100
 ats <- c(ats, temp)
 }

 axis(side=4, at = log10(ats), labels=ticks)

 if (is.null(imageFileName) == FALSE)
 {
 dev.off()
 }
}

midYearForCars <- function(con)
{
 tempTableNames <- c("r1", "r2", "r3", "r4")
 dropTempTable(con, tempTableNames)

 query <- sprintf("create table %s as select distinct vehicle_id, first_use_date from mot where first_use_date is not NULL", tempTableNames[1])
 dbGetQuery(con, query)

 query <- sprintf("create table %s as select substring(first_use_date, 1, 4) as year from %s",
 tempTableNames[2],
 tempTableNames[1])
 dbGetQuery(con, query)

 query <- sprintf("create table %s as select year, count(*) from %s group by (year)",
 tempTableNames[3],
 tempTableNames[2]
)
 dbGetQuery(con, query)

 query <- sprintf("select * from %s order by (year)", tempTableNames[3])
 returnValue <- dbGetQuery(con, query)

 returnValue$cumsum <- cumsum(returnValue$count)

 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsMidYearCars.tex")

 plotYearData(returnValue)
 dropTempTable(con, tempTableNames)
 invisible(returnValue)
}

findTaxis <- function(con, limit=10)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select * from mot where make like '%sTAXI%s'",
 tempTableName, "%", "%")
 dbGetQuery(con, query)

 query <- sprintf("select vehicle_id, make, count(*) as timesTested from %s group by (vehicle_id, make) order by timesTested desc",
 tempTableName)
 returnValue <- dbGetQuery(con, query)

 print(sprintf("There are %.0f taxis tested:", nrow(returnValue)))
 print(returnValue[1:min(limit, nrow(returnValue)),])
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsFindTaxis.tex")
 invisible(returnValue)
}

vehiclesPassedMoreThanOnce <- function(con, limit=10)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select vehicle_id, count(*) as numberInspections from mot where test_result = 'P' group by vehicle_id",
 tempTableName)
 dbGetQuery(con, query)

 query <- sprintf("select * from %s where numberInspections > 1 order by numberInspections desc",
 tempTableName)
 returnValue <- dbGetQuery(con, query)

 print(sprintf("There are %.0f vehicles that passed more than once.",
 nrow(returnValue)))

 print(returnValue[1:min(limit, nrow(returnValue)),])
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsVehiclePassedMoreThanOnce.tex")
 invisible(returnValue)
}

getFuelTypesByYear <- function(con)
{
 tempTableName1 <- "temp"
 dropTempTable(con, tempTableName1)
 tempTableName2 <- "also"
 dropTempTable(con, tempTableName2)

 query <- sprintf("create table %s as select substring(first_use_date, 1, 4) as year, fuel_type from mot",
 tempTableName1)
 dbGetQuery(con, query)

 query <- sprintf("create table %s as select * from CROSSTAB('select year, fuel_type, count(*) from %s group by (year, fuel_type)', 'select distinct fuel_type from temp order by 1') as (year bigint, CN varchar(255), DI varchar(255), ED varchar(255), EL varchar(255), FC varchar(255), GA varchar(255), GB varchar(255), GD varchar(255), HY varchar(255), LN varchar(255), LP varchar(255), OT varchar(255), PE varchar(255), ST varchar(255))",
 tempTableName2,
 tempTableName1)

 dbGetQuery(con, query)

 query <- sprintf("select * from %s", tempTableName2)
 returnValue <- dbGetQuery(con, query)

 print("Count of fuel type by year:")

 print(returnValue)

 dropTempTable(con, tempTableName1)
 dropTempTable(con, tempTableName2)
 capture.output(latexTabularFromDataFrame(returnValue, limit=20), file="../Report/resultsFuelTypeByYear.tex")
 invisible(returnValue)
}

getFuelTypes <- function(con)
{
 query <- "select fuel_type, count(*) as used from mot group by 1"
 returnValue <- dbGetQuery(con, query)

 print("Count of fuel types:")
 print(returnValue)
 capture.output(latexTabularFromDataFrame(returnValue, limit=20), file="../Report/resultsFuelTypes.tex")
 invisible(returnValue)
}

getFirstUseYears <- function(con, lowerLimit=NULL, upperLimit=lowerLimit)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select substring(first_use_date, 1, 4) from mot where first_use_date is not null", tempTableName)
 dbGetQuery(con, query)

 query <- sprintf("select substring as year, count(substring) from %s group by substring", tempTableName)
 returnValue <- dbGetQuery(con, query)

 returnValue$year <- as.numeric(returnValue$year)

 if (is.null(lowerLimit) == FALSE)
 {
 indices <- lowerLimit <= returnValue$year & returnValue$year <= upperLimit
 returnValue <- returnValue[indices,]
 }

 print(sprintf("There are %.0f year entries between %.0f and %.0f",
 nrow(returnValue),
 range(returnValue$year)[1],
 range(returnValue$year)[2]))
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsFirstYearUse.tex")
 invisible(returnValue)
}

findNULLFirstUseDates <- function(con)
{
 query <- "select test_id, vehicle_id from mot where first_use_date is null"
 returnValue <- dbGetQuery(con, query)

 print(sprintf("There are %s tuples where the first_use_date is NULL.",
 nrow(returnValue)))
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsNullFirstYearUse.tex")
 invisible(returnValue)
}

testResultsNormalized <- function(rawResults)
{
 rawResults$passed <- rawResults$p + rawResults$prs
 rawResults$failed <- rawResults$f + rawResults$aba
 rawResults$totalTests <- rawResults$passed + rawResults$failed

 rawResults$percentPassed <- rawResults$passed / rawResults$totalTests
 rawResults$percentFailed <- 1.0 - rawResults$percentPassed

 return(rawResults)
}

numberUniqueVehicles <- function(con)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select vehicle_id, count(*) from mot group by vehicle_id",
 tempTableName)
 dbGetQuery(con, query)

 query <- sprintf("select count(*) from %s", tempTableName)
 returnValue <- dbGetQuery(con, query)

 print(sprintf("There are %.0f unique vehicle IDs.", returnValue[1,1]))

 capture.output(latexTabularFromDataFrame(returnValue, limit=20), file="../Report/resultsUniqueVehicles.tex")
 dropTempTable(con, tempTableName)

 invisible(returnValue)
}

mostTestedVehicles <- function(con, limit=20)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select vehicle_id, count(*) as testedTimes from mot group by vehicle_id",
 tempTableName)
 dbGetQuery(con, query)

 query <- sprintf("select * from %s order by testedTimes desc limit %.0f",
 tempTableName,
 limit)
 returnValue <- dbGetQuery(con, query)

 print(sprintf("%.0f most often tested vehicles", limit))
 print(returnValue[1:min(limit, nrow(returnValue)),])

 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsMostTestedVehicles.tex")
 dropTempTable(con, tempTableName)

 invisible(returnValue)
}

vehicleHistory <- function(con, vehicle_id = "672614726")
{
 print(sprintf("Information about vehicle_id %s", vehicle_id))
 query <- sprintf ("select make, model, colour from mot where vehicle_id = '%s' limit 1",
 vehicle_id)
 returnValue <- dbGetQuery(con, query)
 print(returnValue)

 print("Test result history:")
 query <- sprintf ("select test_date, test_mileage, test_type, test_result from mot where vehicle_id = '%s' order by 1",
 vehicle_id)

 returnValue <- dbGetQuery(con, query)
 print(returnValue)
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsVehicleHistory.tex")
 invisible(returnValue)
}

timesVehicleWasTested <- function(con)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select vehicle_id, count(*) as testedTimes from mot group by vehicle_id",
 tempTableName)
 dbGetQuery(con, query)

 query <- sprintf("select testedTimes, count(*) as vehicles from %s group by 1", tempTableName)
 returnValue <- dbGetQuery(con, query)

 print("Number of times vehicles were tested:")
 print(returnValue)

 capture.output(latexTabularFromDataFrame(returnValue, limit=20), file="../Report/resultsVehiclesTested.tex")
 dropTempTable(con, tempTableName)

 invisible(returnValue)
}

testResultsByPostalCode <- function(con)
{
 tempTableName <- "temp"
 dropTempTable(con, tempTableName)

 query <- sprintf("create table %s as select * from CROSSTAB('select postcode_area, test_result, count(*) from mot group by (postcode_area, test_result)', 'select distinct test_result from mot order by 1') as ct (postcode varchar(255), ABA bigint, ABR bigint, ABRVE bigint, F bigint, P bigint, PRS bigint)", tempTableName)

 dbGetQuery(con, query)

 query <- sprintf("select * from %s", tempTableName)
 returnValue <- dbGetQuery(con, query)

 returnValue[is.na(returnValue)] <- 0

 print("Count of test results by postcode area:")
 print(returnValue)
 capture.output(latexTabularFromDataFrame(returnValue, limit=10), file="../Report/resultsTestResultsPostalcode.tex")
 invisible(returnValue)
}

connectToDatabase <- function()
{
 pw <- "new_user_password"
 # loads the PostgreSQL driver
 drv <- dbDriver("PostgreSQL")
 # creates a connection to the postgres database
 # note that "con" will be used later in each connection to the database
 con <- dbConnect(drv, dbname = "postgres",
 host = "localhost", port = 5432,
 user = "openpg", password = pw)

 return(list(con = con, drv=drv))
}

closeConnectionsToDatabase <- function(drv)
{
 all_cons <- dbListConnections(drv)
 print(sprintf("Closing %.0f existing connections to the database.", length(all_cons)))

 for(con in all_cons)
 {
 dbDisconnect(con)
 }
}

numberOfTuples <- function(con)
{
 query <- "select count(*) as tuples from mot"
 returnValue <- dbGetQuery(con, query)

 print(sprintf("There are %s tuples in the database.",
 formatC(returnValue[1,1],format="d", big.mark=",")))

 capture.output(latexTabularFromDataFrame(returnValue), file="../Report/resultsNumberOfTuples.tex")
 print(returnValue)
 invisible(returnValue)
}

testResults <- function(con)
{
 query <- "SELECT test_result, COUNT(*) FROM mot GROUP BY test_result"
 returnValue <- dbGetQuery(con, query)

 print("Count of test results by type.")
 print(returnValue)
 capture.output(latexTabularFromDataFrame(returnValue, limit=100), file="../Report/resultsTestResults.tex")
 invisible(returnValue)
}

main <- function()
{
 returnValue <- connectToDatabase()
 con <- returnValue$con
 drv <- returnValue$drv

 queries <- c(
 numberOfTuples,
 testResults,
 testResultsByPostalCode,
 getFirstUseYears,
 findNULLFirstUseDates,
 getFuelTypes,
 numberUniqueVehicles,
 timesVehicleWasTested,
 mostTestedVehicles,
 vehicleHistory,
 getFuelTypesByYear,
 vehiclesPassedMoreThanOnce,
 findTaxis,
 plotYearData,
 mostMiles
)

 for (q in queries)
 {
 print(paste0(rep("=", 50), collapse=""))
 q(con)
 }

 closeConnectionsToDatabase(drv)
 print("The program has ended.")
}

d <- main()

"Chuck Cartledge"

#!/bin/bash

psql -t -A -F"," -c "select make from mot" | tr '[:space:]' '\n' | sort | uniq -c | sort -nr

"Chuck Cartledge"

V4.0 September 2017

[image:]

	

Introduction

Section 1 of this document aims to provide a brief overview of the MOT test and an introduction to the data provided in the MOT Testing Data Extract. Section 2 provides technical details of the datasets provided.

Section 1 - Understanding the MOT Data

What is the MOT Test?

Sections 45 to 48 of the Road Traffic Act 1988 provide the legislative basis for MOT testing. The purpose of the MOT test is to ensure that cars, other light vehicles (including some light goods vehicles), private buses and motor bicycles over a prescribed age are checked at least once a year to see that they comply with key roadworthiness and environmental requirements in the Road Vehicle Construction and Use Regulations 1986 and the Road Vehicle Lighting Regulations 1989 as amended. A Test Certificate is issued following successful completion of an examination.

The Test Certificate relates only to the condition of testable items at the time of the test and should not be regarded as evidence:

• of their condition at any other time;

• of the general mechanical condition of the vehicle; or

• that the vehicle fully complies with all aspects of the law on vehicle construction and use.

The test does not require the dismantling of parts of the vehicle although doors, boot lids and other means of access will normally need to be opened. In the case of motor bicycles, cover panels may also need to be removed or raised to examine the vehicle structure.

Detailed legislation on vehicles exempt from the MOT is set out in the Motor Vehicles Test Regulations 1981 regulation 6 (as amended), and in the Road Traffic Act 1988 Section 189. Examples of vehicles exempted from MOT testing include electrically propelled goods vehicles, track laying vehicles, vehicles constructed or adapted to form part of an articulated combination, works trucks, trailers, pedestrian controlled mechanically propelled vehicles and electrically powered pedal cycles. Legislation also exempts vehicles used in particular ways (e.g. travelling to and from test) or particular places (e.g. some islands) from the need to have a valid MOT test certificate. It should also be noted that even when a vehicle is not required to have a test certificate it must still be maintained in a roadworthy condition.

The MOT test is conducted principally at private garages and by some local authorities. These are authorised, or designated as appropriate, by DVSA, and known as Vehicle Testing Stations (VTS). VTS and their staff are subject to inspections by DVSA to ensure that testing is properly carried out using approved test equipment. Only specifically approved people may conduct tests, sign official test documents, and make database entries. VTS may only test those classes and types of vehicle that they are authorised to test and which are of a size and weight that can be accommodated on the authorised test equipment.

Test Classes

The vehicles subject to test under the Regulations are divided into the following classes: -

		Class

		Description

		Age at which first test is required (years)

		1

		Motor bicycles (with or without sidecars) up to 200 cm3

		3

		2

		All motor bicycles (including Class 1) (with or without sidecars).

		3

		3

		3 wheeled vehicles not more than 450 kg unladen weight (excluding motor bicycles with side cars). (3 wheeled vehicles more than 450 kg unladen are in class 4.)

		3

		4

		Cars, passenger vehicles, motor caravans, Private Hire Vehicles, Motor Tricycles, Quadricycles and dual purpose vehicles in all cases with up to eight passenger seats

		3

		

		Goods vehicles not exceeding 3,000 kg Design Gross Weight (DGW).

		3

		

		Taxis and ambulances in either case with up to eight passenger seats.

		1

		

		Passenger vehicles, ambulances, motor caravans and dual purpose vehicles in all cases with nine to twelve passenger seats that;

· are fitted with no more seat belts than the minimum required because of their construction; or

· are identified as having been fitted with a type approved seat belt installation when built; or

· have been tested as class 4A, 5A or 6A (PSV) with at least the same number of seat belts as are currently fitted.

		1

		5

		Private passenger vehicles, ambulances, motor caravans and dual purpose vehicles in all cases with thirteen or more passenger seats (including community and play buses, etc.) that:

· are fitted with no more seat belts than the minimum required because of their construction; or

· are identified as having been fitted with a type approved seat belt installation to all seats when built; or

· have been tested as class 5A or class 6A (PSV) with at least the same number of seat belts as are currently fitted.

		1

		7

		Goods Vehicles over 3,000 kg up to and including 3,500 kg DGW

		3

NOTE: A number of records have Test Class 0. These reflect tests carried out prior to MOT Computerisation, for which a duplicate or replacement test certificate was requested. This process created a valid test record, which has been included for completeness.

What do the datasets contain?

The MOT Testing data release is comprised of two main groups of data, each divided into calendar year.

· Test Results, containing: -

· Information about the time, place and final outcome of the MOT test.

· Information about the vehicle tested.

· Test Items, which contains information about individual RfRs (Reasons for Rejection) discovered during the test.

The remaining three datasets contain further information about individual RfRs, and the groups within which they can fall.

The current release contains test data from 01/01/2005 to 31/12/2016. MOT Computerisation was not fully implemented across Great Britain until 01/04/2006, therefore the dataset will not contain all tests performed between 01/01/2005 and 31/03/2006.

The data encompasses all tests for which a valid MOT pass could have been a potential outcome.

This version of the dataset has introduced a new unique ID variable in the Vehicle Test Result table. This allows users to identify tests for the same vehicle and therefore track it across time.

The MOT Testing Data release contains approximately 30+ million tests and 65+ million associated test item records for each years worth of data. As such, analysis will need to be performed using a suitable database system (e.g. MS SQL, MySQL, PostgreSQL, Oracle). MS Excel and Access are NOT recommended for analysis of this dataset.

Test Result Data

Vehicle Mileage, Vehicle Colour, Fuel Type and Cylinder Capacity are as entered or validated by the Nominated Tester (NT) at the point of test.

Unique vehicles can be tracked using the Vehicle ID field, which is based upon the Registration and VIN (Vehicle Identification Number).

A high level postcode region is provided. To avoid identification of any individual VTS, any region with less than 5 active sites is merged under the code ‘XX’.

Vehicle make and model data is sourced from the DVSA’s vehicle dataset. A small proportion of vehicles do not have a valid record, and have therefore been marked ‘UNCLASSIFIED’.

Vehicles that have an unknown date of manufacture are allocated a first use date of 01/01/1971 by the DVLA. As a result of this, data for 1971 will show anomalies.

Test Outcomes: -

		Result

		Result Code

		Notes

		Pass

		P

		Test Pass

		Fail

		F

		Test Fail

		Pass with Rectification at Station

		PRS

		The process where minor defects may be rectified within one hour after the test, but before recording the result on the VTS Device (Vehicle begins test in a fail condition, but is in pass condition when result is input).

		Abandon

		ABA

		The term used when a test cannot be completed because the NT considers it unsafe to continue or because it becomes apparent during the test that certain items cannot be satisfactorily inspected. An appropriate fee may be charged for the test.

		Abort

		ABR

		The term used when a test cannot be completed because of a problem with the testing equipment or the NT. No fee may be charged for the test.

		Aborted by VE

		ABRVE

		This test was aborted by Vehicle Examiner. No fee may be charged for the test.

Note: Refusal to Test is no longer used as a test outcome in MOT Testing System.

Test Types: -

		Test Type

		Type Code

		Notes

		Normal MOT test

		NT

		Full initial test

		Statutory Appeal

		ES

		

		Partial Retest Left VTS

		PL

		Chargeable (half standard fee) partial MOT retest when vehicle has left VTS for repair of any items, and returned by close of next working day.

		Partial Retest Repaired at VTS

		PV

		Free partial MOT retest where vehicle has remained at VTS for repair.

		Re-Test

		RT

		Full retest of vehicle. Derived by system, not selected by NT

Note: Refusal to Test is no longer held as a test type in MOT Testing System.

Fuel Types: -

		Fuel Type

		Type Code

		Notes

		CNG

		CN

		Compressed Natural Gas

		Diesel

		D

		

		Electric Diesel

		ED

		

		Electric

		EL

		

		Fuel Cells

		FC

		

		Gas

		GA

		

		Gas Bi-Fuel

		GB

		

		Gas Diesel

		GD

		

		Hybrid Electric (Clean)

		HY

		

		LNG

		LN

		Liquefied Natural Gas

		LPG

		LP

		Liquefied Petroleum Gas

		Other

		OT

		

		Petrol

		PE

		

		Steam

		ST

		

Test Item Data

Dangerous item markers are recorded at the discretion of the NT at the point of test.

RfR Types: -

		RfR Type

		Type Code

		Notes

		Fail

		F

		A test failure item.

		PRS

		P

		An item in a failing state at the point of test, repaired within one hour of the test and before the result was entered.

		Advisory

		A

		An Advisory Notice

Test Item Detail and Grouping

Each unique, usable combination of RfR ID and Test Class is a ‘leaf’ within the test item hierarchy. Every RfR can be grouped within one or more levels below its parent vehicle class.

Where a Test Item is of type Fail or PRS, the RfR description is printed upon the VT30 (test failure document). Where a Test Item is of type Advisory, the Advisory text is printed upon an accompanying advisory notice. Vehicle Test Class

Top Level Item

Top Level Item

Test Item

Test Item

RfR

RfR

0-3 additional levels of Test Item

Failure Item Locations

Test Items may have a failure location identifier that can be decoded using a lookup table of failure locations. Each failure location lookup identifier specifies the location from a Lateral, Vertical and Longitudinal perspective (when applicable), for example, failure location ID: 10 has the following attributes.

Lateral : Offside

Longitudinal : Rear

Vertical : Outer

Front

				 Offside Nearside		

Rear

Comparison with DVSA published statistics

Historically, DVSA has published MOT testing volumes and failure rates as part of its annual Effectiveness Report. Traditionally, Normal (Initial) tests with outcomes of Pass, Fail or PRS are used. All other tests are omitted.

Failure rates have been calculated as follows: -

	Initial failure rate = (Test Fail Results + Test PRS Results) / Total Tests

	Final failure rate = Test Fail Results / Total Tests

Initial Failures by defect category are calculated using a count of distinct tests with one or more Fail or PRS type Test Items associated. The categories used are derived from the top level items in the Test Item hierarchy.

Section 2 – Dataset Specification

Data is provided in a ‘csv like’ format, using the pipe character ‘|’ as a delimiter. The carriage return character signifies the end of a record. Examples of create table syntax with suggestions for indexing are provided, in a form suitable for a MySQL database. Import syntax for this database type would be as follows: -

LOAD DATA LOCAL INFILE 'file-name'

INTO TABLE table-name

FIELDS TERMINATED BY '|'

LINES TERMINATED BY '\n'

IGNORE 1 LINES

;

Entity Relationship Diagram

Test Item

Test Item Detail

A Test Item is always defined by a Test Item

Detail

A Test Item detail may define one or more Test Items

Test Item Group

A Test Item Group may have one or more child

Test Item Groups

A Test Item Group may have a parent Test Item Group

A Test Item Group always has one or more child Test Items

A Test Item detail always has a parent Test Item Group

Test Result

A Test Item always belongs to one Test Result

A Test Result may have one or more Test Items

Failure Location

A Failure Location is sometimes used to define the Location of a Test Item on a Vehicle

A Test Item may have one Failure Location.

A failure location identifies a latitude ref, a longitude ref and a vertical ref as applicable for a specific test item.

Vehicle Test Result

This contains details of individual MOT tests and of the vehicle tested. All tests which could result in a valid pass result are included. Datasets are provided by calendar year and can be concatenated if required.

		Column Name (Suggested)

		Description

		Type

		Length

		Notes

		Test ID

		Unique Identifier for a test

		Integer

		10

		Primary Key

		Vehicle ID

		Unique Identifier for a vehicle

		Integer

		10

		

		Test Date

		Date of Test

		Date

		

		Format ‘YYYY-MM-DD’

		Test Class ID

		Class of Vehicle Tested

		Character

		2

		

		Test Type

		Type of MOT Test (See page 4)

		Character

		2

		

		Test Result

		Test Outcome (See page 3)

		Character

		5

		

		Test Mileage

		Mileage recorded at point of test

		Integer

		7

		Zero or blank in the file means it was not possible to obtain a reading or none was taken e.g. an aborted test.

		Postcode Area

		Test Location

		Character

		2

		

		Make

		Vehicle Make

		Character

		50

		

		Model

		Vehicle Model

		Character

		50

		

		Colour

		Vehicle Colour

		Character

		16

		

		Fuel Type

		Vehicle Fuel Type (See page 4)

		Character

		2

		

		Cylinder Capacity

		Vehicle Cylinder Capacity

		Integer

		10

		

		First use Date

		Vehicle Date of First Use		

		Date	

		

		Format ‘YYYY-MM-DD’

Example MySQL Create Table Syntax

CREATE TABLE TESTRESULT (

	TESTID INT UNSIGNED

	,VEHICLEID INT UNSIGNED

	,TESTDATE DATE

	,TESTCLASSID CHAR(2)

	,TESTTYPE CHAR(2)

	,TESTRESULT CHAR(5)

	,TESTMILEAGE INT UNSIGNED

	,POSTCODEREGION CHAR(2)

	,MAKE CHAR(50)

	,MODEL CHAR(50)

	,COLOUR CHAR(16)

	,FUELTYPE CHAR(2)

	,CYLCPCTY INT UNSIGNED

	,FIRSTUSEDATE DATE

	,PRIMARY KEY (TESTID)

	,INDEX IDX1 (TESTDATE, TESTTYPE, TESTRESULT, TESTCLASSID)

)

;

Vehicle Test Item

This contains details of individual MOT test failure items and advisory notices. Datasets are split by calendar year and can be concatenated if required.

		Column Name (Suggested)

		Description

		Type

		Length

		Notes

		Test ID

		Unique Identifier for a test

		Integer

		10

		References associated test in Vehicle Test Result table.

		RfR ID

		Reason for Rejection ID

		Integer

		4

		

		RfR Type

		Reason for Rejection Type (See page 4)

		Character

		1

		‘F’, ‘P’, ‘A’

		Location ID

		Failure Location ID

		Integer

		4

		References associated failure location in Failure Location table. The location Id identifies the lateral, longitudinal and vertical position of the RfR (where applicable).

		D Mark

		Dangerous Item Marker

		Character

		1

		Signifies that item was marked ‘Dangerous’ by NT.

Example MySQL Create Table Syntax

CREATE TABLE TESTITEM (

	TESTID INT UNSIGNED

	,RFRID SMALLINT UNSIGNED

	,RFRTYPE CHAR(1)

	,LOCATIONID INT

	,DMARK CHAR(1)

	,INDEX IDX1 (TESTID)

	,INDEX IDX2 (RFRID)

);

Test Item Detail

This contains details of individual RfRs

		Column Name (Suggested)

		Description

		Type

		Length

		Notes

		RfR ID

		Reason for Rejection ID

		Integer

		4

		Primary Key

		Test Class ID

		Class of Vehicle Tested

		Character

		2

		Primary Key

		Test Item ID

		Test Item ID

		Integer

		4

		References parent test item in Test Item Group table (with Test Class ID)

		Minor Item

		Minor Item Marker – Specifies whether an item can be classified as minor (qualifies for free partial retest).

		Character

		1

		‘Y’, ‘N’

		RfR Desc

		RfR Short Description

		Character

		250

		Text printed on VT30 test failure document

		RfR Loc Marker

		RfR Location Marker – Specifies whether further location details are required against this item.

		Character

		1

		‘Y’, ‘N’

		RfR Insp Man Desc

		RfR Inspection Manual Description

		Character

		500

		

		RfR Advisory Text

		Advisory Notice Text

		Character

		250

		Text printed for type ‘A’ Test Items on Advisory Notice

		Test Item Set Section ID

		

		Integer

		4

		References top level test item in Test Item Group table (with Test Class ID)

Example MySQL Create Table Syntax

CREATE TABLE TESTITEM_DETAIL (

	RFRID SMALLINT UNSIGNED

	,TESTCLASSID CHAR(2)

	,TSTITMID SMALLINT UNSIGNED

	,MINORITEM CHAR(1)

	,RFRDESC CHAR(250)

	,RFRLOCMARKER CHAR(1)

	,RFRINSPMANDESC CHAR(500)

	,RFRADVISORYTEXT CHAR(250)

	,TSTITMSETSECID SMALLINT UNSIGNED

	,PRIMARY KEY (RFRID, TESTCLASSID)

	,INDEX IDX1 (TSTITMID, TESTCLASSID)

	,INDEX IDX2 (TSTITMSETSECID, TESTCLASSID)

)

;

Test Item Group

This contains details of RfR groupings within the test item hierarchy. The top level group for a Test Class is always ‘Vehicle’, with a Test Item ID of 0.

		Column Name (Suggested)

		Description

		Type

		Length

		Notes

		Test Item ID

		Test Item ID

		Integer

		4

		Primary Key

		Test Class ID

		Class of Vehicle Tested

		Character

		2

		Primary Key

		Parent ID

		

		Integer

		4

		References parent Test Item ID in hierarchy (with Test Class ID)

		Test Item Set Section ID

		

		Integer

		4

		References top level test item in hierarchy (with Test Class ID)

		Item Name

		Test Item Name

		Character

		100

		

Example MySQL Create Table Syntax

CREATE TABLE TESTITEM_GROUP (

	TSTITMID SMALLINT UNSIGNED

	,TESTCLASSID CHAR(2)

	,PARENTID SMALLINT UNSIGNED

	,TSTITMSETSECID SMALLINT UNSIGNED

	,ITEMNAME CHAR(100)

	,PRIMARY KEY (TSTITMID, TESTCLASSID)

	,INDEX IDX1 (PARENTID, TESTCLASSID)

	,INDEX IDX2(TSTITMSETSECID, TESTCLASSID)

)

Failure Location

Reference for Location IDs in Test Item Table

		Column Name (Suggested)

		Description

		Type

		Length

		Notes

		Failure Location ID

		

		Integer

		4

		Primary Key

		Lateral

		Lateral Location Text

		Character

		20

		

		Vertical

		Vertical Location Text

		Character

		20

		

		Longitudinal

		Longitudinal Location Text

		Character

		20

		

Example MySQL Create Table Syntax

CREATE TABLE FAILURE_LOCATION (

	FAILURELOCATIONID INT(4)

	, LATERAL CHAR(20)

	, VERTICAL CHAR(20)

	, LONGITUDINAL CHAR(20)

	,PRIMARY KEY (FAILURELOCATIONID)

)

;

Example Queries

The following assume that tables have been created using the above syntax, and that the annual Test Result and Test Item datasets have been concatenated into a single pair.

Initial, Completed Test Volumes by Class 2009-10 (As calculated in DVSA effectiveness report)

SELECT TESTCLASSID

	,TESTRESULT

	,COUNT(*) AS TEST_VOLUME

FROM TESTRESULT

WHERE TESTTYPE=’NT’

	AND TESTRESULT IN (‘P’,’F’,’PRS’)

	AND TESTDATE BETWEEN ‘2009-04-01’ AND ‘2010-03-31’

GROUP BY TESTCLASSID

	,TESTRESULT

;

RfR Volumes and Distinct Test Failures 2008 for Class 7 Vehicles by Top Level Test Item Group (For vehicles as presented for initial test)

SELECT d.ITEMNAME

	,COUNT(*) AS RFR_VOLUME

	,COUNT(DISTINCT a.TESTID) AS TEST_VOLUME

FROM TESTRESULT AS a

	INNER JOIN TESTITEM AS b

		ON a.TESTID=b.TESTID

	INNER JOIN TESTITEM_DETAIL AS c

		ON b.RFRID=c.RFRID

		AND a.TESTCLASSID = c.TESTCLASSID

	INNER JOIN TESTITEM_GROUP AS d

		ON c.TSTITMSETSECID = d.TSTITMID

		AND c.TESTCLASSID = d.TESTCLASSID

WHERE a.TESTDATE BETWEEN ‘2008-01-01’ AND ‘2008-12-31’

	AND a.TESTCLASSID = ‘7’

	AND a.TESTTYPE=’NT’

	AND a.TESTRESULT IN (‘F’,’PRS’)

	AND b.RFRTYPE IN(‘F’,’P’)

GROUP BY d.ITEMNAME

;

Basic Expansion of RfR Hierarchy for Class 5 Vehicles

SELECT a.RFRID

	,a.RFRDESC

	,b.ITEMNAME AS LEVEL1

	,c.ITEMNAME AS LEVEL2

	,d.ITEMNAME AS LEVEL3

	,e.ITEMNAME AS LEVEL4

	,f.ITEMNAME AS LEVEL5

FROM TESTITEM_DETAIL AS a

	INNER JOIN TESTITEM_GROUP AS b

		ON a.TSTITMID = b.TSTITMID

		AND a.TESTCLASSID = b.TESTCLASSID

	LEFT JOIN TESTITEM_GROUP AS c

		ON b.PARENTID = c.TSTITEMID

		AND b.TESTCLASSID = c.TESTCLASSID

	LEFT JOIN TESTITEM_GROUP AS d

		ON c.PARENTID = d.TSTITEMID

		AND c.TESTCLASSID = d.TESTCLASSID

	LEFT JOIN TESTITEM_GROUP AS e

		ON d.PARENTID = e.TSTITEMID

		AND d.TESTCLASSID = e.TESTCLASSID

	LEFT JOIN TESTITEM_GROUP AS f

		ON e.PARENTID = f.TSTITMID

		AND e.TESTCLASSID = f.TESTCLASSID

WHERE a.TESTCLASSID = ‘5’

;

Appendix A – Further Reading

MOT information for public use

https://www.gov.uk/getting-an-mot

MOT Testing Manuals and Guides

https://www.gov.uk/topic/mot/manuals

[bookmark: _GoBack][bookmark: _GoBack]

Internal DVSA MOT Scheme Operations Manual

https://www.gov.uk/government/organisations/driver-and-vehicle-standards-agency

		Page 11 of 11

image1.png

a0

Driver & Vehicle
Standards
Agency

"Chuck Cartledge"

